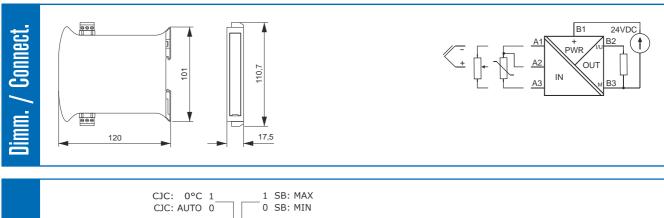
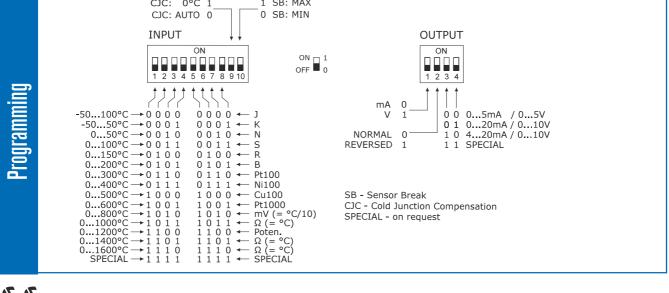
[VDB


-eatures


temperature transducer LXT - 81U **Rail mounted**

- All parameters selected by DIP switches.
 - Resistance input: Pt100, Ni100, Cu100, Pt1000, Ω, potentiometer.
 - Voltage input: B, J, K, N, R, S, mV.
 - Current output: 0...5 mA, 0...20 mA, 4...20 mA.
 - Voltage output: 0...5 V, 0...10 V.
 - Galvanic isolation input/output.
 - Sensor break signalization.
 - All sensors linearization.
 - High reliability and accuracy.
 - Detachable, fast and reliable wire connectors.
 - Slim, rail and fast click mounted housing.
 - Special versions on request.

The LXT-81U-D transducer converts temperature from an input sensor to the output signal 0...5 mA, 0...20 mA, 4...20 mA, 0...5 V or 0...10 V with galvanic separation between an input sensor and the output. A device assures cold junction compensation (if thermocouple is connected as input signal) or it makes input wire resitance compensation (if resistive element is connected). Each output signal may be inverted. DIP switches on the front panel allow for easy and comfortable setting all parameters like sensor, operating range, compensation, output signal and sensor break signalization. There is possibility to deliver device for non-standard signals on demand.

Input

- Pt100, Ni100, Cu100, Pt1000, resistance, potentiometer
- J, K, N, S, R, B, voltage
- sensor current
- input line resistance
- input line resistance variation influence
- voltage source internal resistance
- voltage source internal resistance variation infl.

Output

- output signal
 - subranges
- Ioad resistance
 - current output
 - voltage output
- Ioad variation influeance
- sensor break indication

General data

- basic accuracy (larger value)
- resistance input / accuracy (range) /
- voltage input / accuracy (range) /
- response time (10...90%)
- cold junction compensation (CJC)
- galvanic separation (test)
- warm up time

Power supply

Specifications

supply voltage	
- nominal	24V DC
- supply voltage range	2030V
supply current	\leq 35mA
supply voltage variation influence	$\leq 0.03\%$

Temperature

operating temperature	07
temperature influence	≤ 0.0
temperature influence for CJC	≤ 0.1

Environment conditions

storage temperature	
humidity (non-condensing)	
working position	

Housing

- material
- protection housing/terminals
- wire connections
- dimensions
- weight

0 or 22mA / 0 or 11V $\leq 0.1\%$ 0.1Ω (200Ω); 0.13Ω (400Ω); 0.16Ω (800Ω); 0.2Ω (1600Ω) 10µV (35mV); 13µV (75mV); 16µV (150mV) \leq 1s $\leq 0.5^{\circ}C$ 1.5kV AC, 50Hz, 1min

DC

15min

0...1600Ω

-5...140mV

~ 0.35mA

 $\leq 10\Omega$ /wire

 $\leq 0.005\%/\Omega$

 $\leq 0.1\%/k\Omega$

0...20mA, 0...10V (may be inverted) 0...5mA, 4...20mA, 0...5V (may be inverted)

 $\leq 1k\Omega$

 $\leq 500\Omega$ $\geq 10k\Omega$

≤ 0.05%

′0°C 01%/°C 1%/°C

-20...85°C $\leq 90\%$ any

molded PC/ABS IP20/IP20 plugs with screw terminals 1.5mm² see drawings on the first page ~ 100g

AUTOMATION ANDINDUSTRALELECTRONC

